Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Article in English | MEDLINE | ID: mdl-38728170

ABSTRACT

PURPOSE: This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy. METHODS: We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup. RESULTS: The plasma concentration showed a linear correlation with the daily dose taken ( r  = 0.17; P  < 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5 ±â€…297.1 vs. 633.8 ±â€…305.5 µg/ml; P  = 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2 ±â€…1.7 vs. 3.8 ±â€…2.0; P  = 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8 ±â€…293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1 ±â€…165.6 ng/ml and 260.0 ±â€…36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8 ±â€…285.6 vs. 433.0 ±â€…227.2 ng/ml; P  = 0.042). CONCLUSION: The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.

2.
BMC Pediatr ; 24(1): 299, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702595

ABSTRACT

PURPOSE: We aimed to investigated the influencing risk factors of voriconazole-induced liver injury in Uygur pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). METHODS: This was a prospective cohort design study. High-performance liquid chromatography-mass spectrometry was employed to monitor voriconazole concentration. First-generation sequencing was performed to detect gene polymorphisms. Indicators of liver function were detected at least once before and after voriconazole therapy. RESULTS: Forty-one patients were included in this study, among which, 15 patients (36.6%) had voriconazole-induced liver injury. The proportion of voriconazole trough concentration > 5.5 µg·mL-1 patients within the DILI group (40.0%) was significantly higher compared to the control group (15.4%) (p < 0.05). After administration of voriconazole, the values of ALT (103.3 ± 80.3 U/L) and AST (79.9 ± 60.6 U/L) in the DILI group were higher than that in the control group (24.3 ± 24.8 and 30.4 ± 8.6 U/L) (p < 0.05). There was no significant difference between the two groups in genotype and allele frequencies of CYP2C19*2, CYP2C19*3, CYP2C19*17, and UGT1A4 (rs2011425) (p > 0.05). CONCLUSION: There was a significant correlation between voriconazole-induced liver injury and voriconazole trough concentration in high-risk Uygur pediatric patients with allogeneic HSCT.


Subject(s)
Antifungal Agents , Chemical and Drug Induced Liver Injury , Hematopoietic Stem Cell Transplantation , Voriconazole , Humans , Voriconazole/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Child , Male , Female , Prospective Studies , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Risk Factors , Antifungal Agents/adverse effects , Child, Preschool , China , Adolescent , Cytochrome P-450 CYP2C19/genetics , Transplantation, Homologous/adverse effects
3.
Int J Gen Med ; 17: 1887-1895, 2024.
Article in English | MEDLINE | ID: mdl-38736670

ABSTRACT

Purpose: This study aimed to investigate the alteration trends and overlaps of positive features in benign and malignant thyroid nodules of different sizes based on the Chinese Thyroid Imaging Reporting and Data System (C-TIRADS). Patients and Methods: 1337 patients with 1558 thyroid nodules were retrospectively recruited from November 2021 to December 2023. These nodules were divided into three groups according to maximum diameter: A (≤10 mm), B (10-20 mm), and C (≥20 mm). C-TIRADS positive features were compared between benign and malignant thyroid nodules of different sizes. In addition, the trends of positive features with changes in nodule size among malignant thyroid nodules were analyzed. Results: The incidence of positive features in malignant thyroid nodules was higher than that in benign. As benign nodules grow, the incidence of all positive features showed a linear decreasing trend (Z values were 72.103, 101.081, 17.344, 33.909, and 129.304, P values < 0.001). With the size of malignant thyroid nodules increased, vertical orientation, solid, marked hypoechogenicity, and ill-defined/irregular margins/extrathyroidal extension showed a linear decreasing trend (Z = 148.854, 135.378, 8.590, and 69.239, respectively; P values < 0.05), while suspicious microcalcifications showed a linear increasing trend (Z = 34.699, P<0.001). In terms of overlapping characteristics, group A had a significantly higher overlapping rate than the other two groups, and the overlapping rate of solid indicators remained the highest among all three groups (P < 0.05). Conclusion: Differences in positive features were observed between thyroid nodules of different sizes. Except for suspicious microcalcifications, the incidence of other four positive features decreased with increasing nodule size. In addition, a negative correlation was observed between the overlap rate and nodule size. These results may provide a basis for sonographers to upgrade or downgrade thyroid nodules based on their own experience.

4.
Int J Biol Macromol ; 267(Pt 1): 131453, 2024 May.
Article in English | MEDLINE | ID: mdl-38588842

ABSTRACT

Enterovirus 71 (EV71) causes hand-foot-and-mouth disease (HFMD), neurological complications, and even fatalities in infants. Clinically, the increase of extracellular vesicles (EVs) in EV71 patients' serum was highly associated with the severity of HFMD. EV71 boosts EVs biogenesis in an endosomal sorting complex required for transport (ESCRT)-dependent manner to facilitate viral replication. Yet, the impact of EVs-derived from ESCRT-independent pathway on EV71 replication and pathogenesis is highly concerned. Here, we assessed the effects of EV71-induced EVs from ESCRT-independent pathway on viral replication and pathogenesis by GW4869, a neutral sphingomyelinase inhibitor. Detailly, in EV71-infected mice, blockade of the biogenesis of tissue-derived EVs in the presence of GW4869 restored body weight loss, attenuated clinical scores, and improved survival rates. Furthermore, GW4869 dampens EVs biogenesis to reduce viral load and pathogenesis in multiple tissues of EV71-infected mice. Consistently, GW4869 treatment in a human intestinal epithelial HT29 cells decreased the biogenesis of EVs, in which the progeny EV71 particle was cloaked, leading to the reduction of viral infection and replication. Collectively, GW4869 inhibits EV71-induced EVs in an ESCRT-independent pathway and ultimately suppresses EV71 replication and pathogenesis. Our study provides a novel strategy for the development of therapeutic agents in the treatment for EV71-associated HFMD.


Subject(s)
Aniline Compounds , Endosomal Sorting Complexes Required for Transport , Enterovirus A, Human , Extracellular Vesicles , Virus Replication , Animals , Virus Replication/drug effects , Enterovirus A, Human/drug effects , Enterovirus A, Human/physiology , Mice , Extracellular Vesicles/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Benzylidene Compounds/pharmacology , Enterovirus Infections/virology , Enterovirus Infections/drug therapy , Enterovirus Infections/metabolism , Viral Load/drug effects , Female
5.
Front Neurosci ; 18: 1381085, 2024.
Article in English | MEDLINE | ID: mdl-38576866

ABSTRACT

Background: Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder that not only causes intense pain but also affects the psychological health of patients. Since TN pain intensity and negative emotion may be grounded in our own pain experiences, they exhibit huge inter-individual differences. This study investigates the effect of inter-individual differences in pain intensity and negative emotion on brain structure in patients with TN and the possible pathophysiology mechanism underlying this disease. Methods: T1 weighted magnetic resonance imaging and diffusion tensor imaging scans were obtained in 46 patients with TN and 35 healthy controls. All patients with TN underwent pain-related and emotion-related questionnaires. Voxel-based morphometry and regional white matter diffusion property analysis were used to investigate whole brain grey and white matter quantitatively. Innovatively employing partial least squares correlation analysis to explore the relationship among pain intensity, negative emotion and brain microstructure in patients with TN. Results: Significant difference in white matter integrity were identified in patients with TN compared to the healthy controls group; The most correlation brain region in the partial least squares correlation analysis was the genus of the corpus callosum, which was negatively associated with both pain intensity and negative emotion. Conclusion: The genu of corpus callosum plays an important role in the cognition of pain perception, the generation and conduction of negative emotions in patients with TN. These findings may deepen our understanding of the pathophysiology of TN.

6.
Opt Lett ; 49(7): 1782-1785, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560862

ABSTRACT

In the field of optics, bound states in the continuum (BICs) are of significant practical importance as they can trap electromagnetic waves spatially, even though their frequency lies within the continuous spectrum. Previous research, however, has shown that BICs localized in optical cavities are highly sensitive to geometric and environmental changes. This sensitivity implies that slight variations can lead to the loss of BICs, necessitating extreme precision in manufacturing, which poses a challenge for practical implementation. To overcome this issue, this study employs topological photonic crystals (PhCs) to engineer topological corner states (TCS) within PhCs. By doing so, it establishes a method for creating topological BICs that are inherently robust against disturbances, thereby enhancing their suitability for real-world applications.

7.
Medicine (Baltimore) ; 103(9): e37379, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38428849

ABSTRACT

The study proposes a combined nomogram based on radiomics features from magnetic resonance neurohydrography and clinical features to identify symptomatic nerves in patients with primary trigeminal neuralgia. We retrospectively analyzed 140 patients with clinically confirmed trigeminal neuralgia. Out of these, 24 patients constituted the external validation set, while the remaining 116 patients contributed a total of 231 nerves, comprising 118 symptomatic nerves, and 113 normal nerves. Radiomics features were extracted from the MRI water imaging (t2-mix3d-tra-spair). Radiomics feature selection was performed using L1 regularization-based regression, while clinical feature selection utilized univariate analysis and multivariate logistic regression. Subsequently, radiomics, clinical, and combined models were developed by using multivariate logistic regression, and a nomogram of the combined model was drawn. The performance of nomogram in discriminating symptomatic nerves was assessed through the area under the curve (AUC) of receiver operating characteristics, accuracy, and calibration curves. Clinical applications of the nomogram were further evaluated using decision curve analysis. Five clinical factors and 13 radiomics signatures were ultimately selected to establish predictive models. The AUCs in the training and validation cohorts were 0.77 (0.70-0.84) and 0.82 (0.72-0.92) with the radiomics model, 0.69 (0.61-0.77) and 0.66 (0.53-0.79) with the clinical model, 0.80 (0.74-0.87), and 0.85 (0.76-0.94) with the combined model, respectively. In the external validation set, the AUCs for the clinical, radiomics, and combined models were 0.70 (0.60-0.79), 0.78 (0.65-0.91), and 0.81 (0.70-0.93), respectively. The calibration curve demonstrated that the nomogram exhibited good predictive ability. Moreover, The decision curve analysis curve indicated shows that the combined model holds high clinical application value. The integrated model, combines radiomics features from magnetic resonance neurohydrography with clinical factors, proves to be effective in identify symptomatic nerves in trigeminal neuralgia. The diagnostic efficacy of the combined model was notably superior to that of the model constructed solely from conventional clinical features.


Subject(s)
Radiomics , Trigeminal Neuralgia , Humans , Nomograms , Retrospective Studies , Trigeminal Neuralgia/diagnostic imaging , Magnetic Resonance Imaging , Water
8.
Ann Clin Transl Neurol ; 11(5): 1148-1159, 2024 May.
Article in English | MEDLINE | ID: mdl-38433494

ABSTRACT

OBJECTIVE: Abnormalities in the gray matter structure of cerebral small vessel disease (CSVD) have been observed throughout the brain. However, whether cortico-cortical connections exist between regions of gray matter atrophy in patients with CSVD has not been fully elucidated. This question was tested by comparing the gray matter covariance networks in CSVD patients with and without cognitive impairment (CI). METHODS: We performed multivariate modeling of the gray matter volume measurements of 61 patients with CI (CSVD-CI), 85 patients without CI (CSVD-NC), and 108 healthy controls using source-based morphological analysis (SBM) to obtain gray matter structural covariance networks at the population level. Then, correlations between structural covariance networks and cognitive functions were analyzed in CSVD patients. Finally, a support vector machine (SVM) classifier was used with the gray matter covariance network as a classification feature to identify CI among the CSVD population. RESULTS: The results of the analysis of all the subjects showed that compared with healthy controls, the expression of the thalamic covariance network, cerebellum covariance network, and calcarine cortex covariance network was reduced in patients with CSVD. Moreover, CSVD-CI patients showed a significant reduction in the expression of the thalamic covariance network, encompassing the thalamus and the parahippocampal gyrus, relative to CSVD-NC patients, which persisted after excluding CSVD patients with thalamic lacunes. In patients with CSVD, cognitive functions were positively correlated with measures of the thalamic covariance network. More than 80% of CSVD patients with CI were correctly identified by the SVM classifier. INTERPRETATION: Our findings provide new evidence to explain the distribution state of gray matter reduction in CSVD patients, and the thalamic covariance network is the core region for early gray matter reduction during the development of CSVD disease, which is related to cognitive deficits. Reduced expression of thalamic covariance networks may provide a neuroimaging biomarker for the early identification of cognitive impairment in CSVD patients.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Gray Matter , Magnetic Resonance Imaging , Thalamus , Humans , Male , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Aged , Middle Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , Nerve Net/diagnostic imaging , Nerve Net/pathology , Support Vector Machine
9.
Angew Chem Int Ed Engl ; 63(13): e202318515, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38320193

ABSTRACT

Insufficient accumulation of lipid nanoparticles (LNPs)-based mRNA vaccines in antigen presenting cells remains a key barrier to eliciting potent antitumor immune responses. Herein, we develop dendritic cells (DCs) targeting LNPs by taking advantage of mannose receptor-mediated endocytosis. Efficient delivery of mRNA to DCs is achieved in vitro and in vivo utilizing the sweet LNPs (STLNPs-Man). Intramuscular injection of mRNA vaccine (STLNPs-Man@mRNAOVA ) results in a four-fold higher uptake by DCs in comparison with commercially used LNPs. Benefiting from its DCs targeting ability, STLNPs-Man@mRNAOVA significantly promotes the antitumor performances, showing a comparable therapeutic efficacy by using one-fifth of the injection dosage as the vaccine prepared from normal LNPs, thus remarkably avoiding the side effects brought by conventional mRNA vaccines. More intriguingly, STLNPs-Man@mRNAOVA exhibits the ability to downregulate the expression of cytotoxic T-lymphocyte-associated protein 4 on T cells due to the blockade of CD206/CD45 axis, showing brilliant potentials in promoting antitumor efficacy combined with immune checkpoint blockade therapy.


Subject(s)
Cancer Vaccines , Liposomes , Nanoparticles , Neoplasms , Humans , Antigen Presentation , mRNA Vaccines , RNA, Messenger/genetics , RNA, Messenger/metabolism , Dendritic Cells/metabolism , Neoplasms/therapy , Neoplasms/metabolism
10.
Med Eng Phys ; 123: 104088, 2024 01.
Article in English | MEDLINE | ID: mdl-38365341

ABSTRACT

PURPOSE: The purpose of this study was to develop and evaluate a deep learning network for three-dimensional reconstruction of the spine from biplanar radiographs. METHODS: The proposed approach focused on extracting similar features and multiscale features of bone tissue in biplanar radiographs. Bone tissue features were reconstructed for feature representation across dimensions to generate three-dimensional volumes. The number of feature mappings was gradually reduced in the reconstruction to transform the high-dimensional features into the three-dimensional image domain. We produced and made eight public datasets to train and test the proposed network. Two evaluation metrics were proposed and combined with four classical evaluation metrics to measure the performance of the method. RESULTS: In comparative experiments, the reconstruction results of this method achieved a Hausdorff distance of 1.85 mm, a surface overlap of 0.2 mm, a volume overlap of 0.9664, and an offset distance of only 0.21 mm from the vertebral body centroid. The results of this study indicate that the proposed method is reliable.


Subject(s)
Neural Networks, Computer , Plastic Surgery Procedures , Imaging, Three-Dimensional/methods , Spine/diagnostic imaging , Image Processing, Computer-Assisted/methods
11.
Plant J ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38341799

ABSTRACT

Watercore is a common physiological disease of Rosaceae plants, such as apples (Malus domestica), usually occurring during fruit ripening. Apple fruit with watercore symptoms is prone to browning and rotting, thus losing commercial viability. Sorbitol and calcium ions are considered key factors affecting watercore occurrence in apples. However, the mechanism by which they affect the occurrence of watercore remains unclear. Here, we identified that the transcription factor MdWRKY9 directly binds to the promoter of MdSOT2, positively regulates the transcription of MdSOT2, increases sorbitol content in fruit, and promotes watercore occurrence. Additionally, MdCRF4 can directly bind to MdWRKY9 and MdSOT2 promoters, positively regulating their expression. Since calcium ions can induce the ubiquitination and degradation of the transcription factor MdCRF4, they can inhibit the transcription of MdWRKY9 and MdSOT2 by degrading MdCRF4, thereby reducing the sorbitol content in fruit and inhibiting the occurrence of fruit watercore disease. Our data sheds light on how calcium ions mitigate watercore in fruit, providing molecular-level insights to enhance fruit quality artificially.

12.
Bull Environ Contam Toxicol ; 112(2): 30, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281179

ABSTRACT

This study focused on constructing iron(III)-tetraamidomacrocyclic ligand (FeIII-TAML)-based magnetic nanostructures via a surfactant-assisted self-assembly (SAS) method to enhance the reactivity and recoverability of FeIII-TAML activators, which have been widely employed to degrade various organic contaminants. We have fabricated FeIII-TAML-based magnetic nanomaterials (FeIII-TAML/CTAB@Fe3O4, CTAB refers to cetyltrimethylammonium bromide) by adding a mixed solution of FeIII-TAML and NH3·H2O into another mixture containing CTAB, FeCl2 and FeCl3 solutions. The as-prepared FeIII-TAML/CTAB@Fe3O4 nanocomposite showed relative reactivity compared with free FeIII-TAML as indicated by decomposition of bisphenol A (BPA). Moreover, our results demonstrated that the FeIII-TAML/CTAB@Fe3O4 composite can be separated directly from reaction solutions by magnet adsorption and reused for at least four times. Therefore, the efficiency and recyclability of self-assembled FeIII-TAML/CTAB@Fe3O4 nanostructures will enable the application of FeIII-TAML-based materials with a lowered expense for environmental implication.


Subject(s)
Benzhydryl Compounds , Ferric Compounds , Nanostructures , Phenols , Ferric Compounds/chemistry , Cetrimonium , Magnetic Phenomena
13.
Inorg Chem ; 63(4): 1962-1973, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38236237

ABSTRACT

One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 µM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 µM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 µM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.

14.
Sci Total Environ ; 912: 169150, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38061643

ABSTRACT

Based on long-term field observation data over 11 years at 23 sites in two mountainous areas (TS1 and TS2) at elevations from 829 to 2700 m, where the dominant vegetation type of TS1 and TS2 was temperate mixed broadleaf-coniferous forest and cold temperate coniferous forest, respectively, we analyzed the correlations between soil respiration (Rs) and abiotic and biotic factors to explore the response patterns of Rs to environmental factors within and between the sites along the elevation gradient. We found that soil moisture (θ) and its combinations (Ts × Î¸ and θ/Ts) with soil temperature (Ts) increased significantly with increasing elevation, while Ts, soil bulk density (SBD), C/N ratio, and pH decreased significantly with increasing elevation. Within each site, both exponential- Ts (ET) and Gaussian-Ts (GT) models could be used for predicting the Rs seasonal variation, except for two sites in the area of TS1, where θ was a better predictor than Ts. The integrated ET-θ and GT-θ models could be applied to all sites except for 22S, and both were superior to the ET and GT models. The mean Rs of each site over the measurement period ranged from 3.07 to 6.94 µmol CO2 m-2 s-1 and showed a quadratic increase along the elevation gradient. Among the 23 sites, Q10 ranged from 1.15 to 3.79, and it increased with elevation, reaching a maximum at an elevation of 2366 m; the θ sensitivity parameter (d) decreased significantly with elevation and reached a minimum at an elevation of 1975 m. Both the d and Ts sensitivity parameter (b) of Rs were complementary to each other along the elevation gradient. Among the sites, Ts, θ, and combinations of the two were more important drivers for both Rs and Q10 variations than microbial and physicochemical indicators.

15.
Ther Drug Monit ; 46(1): 111-117, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37752632

ABSTRACT

BACKGROUND: Information on the efficacy and plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy is limited. Therefore, this real-world retrospective study aimed to assess the efficacy, tolerability, and plasma concentration of the maximum dose of PER for epilepsy treatment in Chinese pediatric patients. METHODS: A total of 107 pediatric patients from 2 hospitals in China were enrolled in this study. The plasma concentration of PER was determined using ultrahigh-performance liquid chromatography. The primary efficacy endpoint was the seizure reduction rate after PER treatment at the last follow-up. RESULTS: The response rate to PER therapy was 59.8% (64/107). The authors observed that patients younger than 6 years of age (n = 49) showed a significantly lower concentration-to-dose ratio than patients with ages between 6 and 14 years (n = 58) (2.2 ± 1.7 vs. 3.0 ± 1.8 mcg·mL -1 ·kg·mg -1 , respectively; P < 0.05). Patients who received enzyme-inducing antiseizure medication had significantly lower concentration-to-dose ratios than those who did not receive enzyme-inducing antiseizure medication (EIASM) (2.1 ± 1.8 vs. 3.1 ± 2.0 mcg·mL -1 ·kg·mg -1 , P < 0.05). A total of 37 patients (34.6%) reported treatment adverse events. Patients with somnolence and irritability had a significantly higher PER plasma concentration than the "no treatment-emergent adverse effect" groups ( P < 0.05). CONCLUSIONS: PER is an effective and well-tolerated treatment option for patients with epilepsy. To ensure the clinical efficacy and safety of PER in pediatric patients, it is necessary to monitor its plasma concentrations.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Epilepsy , Humans , Child , Adolescent , Anticonvulsants/adverse effects , Retrospective Studies , Epilepsy/drug therapy , Nitriles , Pyridones/adverse effects , Treatment Outcome , Drug Therapy, Combination
16.
Adv Mater ; 36(13): e2309862, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38133487

ABSTRACT

The extracellular potassium ion concentration in the brain exerts a significant influence on cellular excitability and intercellular communication. Perturbations in the extracellular potassium ion level are closely correlated with various chronic neuropsychiatric disorders including depression. However, a critical gap persists in performing real-time and long-term monitoring of extracellular potassium ions, which is necessary for comprehensive profiling of chronic neuropsychiatric diseases. Here, a fiber potassium ion sensor (FKS) that consists of a soft conductive fiber with a rough surface and a hydrophobic-treated transduction layer interfaced with a potassium ion-selective membrane is found to solve this problem. The FKS demonstrates stable interfaces between its distinct functional layers in an aqueous environment, conferring an exceptional stability of 6 months in vivo, in stark contrast to previous reports with working durations from hours to days. Upon implantation into the mouse brain, the FKS enables effective monitoring of extracellular potassium ion dynamics under diverse physiological states including anesthesia, forced swimming, and tail suspension. Using this FKS, tracking of extracellular potassium ion fluctuations that align with behaviors associated with the progression of depression over months is achieved, demonstrating its usability in studying chronic neuropsychiatric disorders from a new biochemical perspective.


Subject(s)
Brain , Potassium , Animals , Mice , Ions
17.
ACS Nano ; 17(23): 23814-23828, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38038679

ABSTRACT

Polyethylene glycol conjugation (PEGylation) is the most successful strategy to promote the stability, pharmacokinetics, and efficacy of therapeutics; however, anti-PEG antibodies induced by repeated treatments raise serious concerns about the future of PEGylated therapeutics. In order to solve the "PEG dilemma", polymers with excellent water solubility and biocompatibility are urgently desired to attenuate the generation of anti-PEG antibodies. Here, poly(ethyl ethylene phosphate) (PEEP) with excellent degradability and stealth effects is used as an alternative to PEG to overcome the "PEG dilemma". PEEPylated liposomes exhibit lower immunogenicity and generate negligible anti-PEEP antibodies (IgM and IgG) after repeated treatments. In vivo studies confirm that PEEPylated liposomes loaded with oxaliplatin (PEEPlipo@OxPt) show better pharmacokinetics compared to PEGlipo@OxPt, and they exhibit potent antitumor performances, which can be further promoted with checkpoint blockade immunotherapy. In addition, PEEPylated lipid nanoparticle is also used to develop an mRNA vaccine with the ability to evoke a potent antigen-specific T cell response and achieve excellent antitumor efficacy. PEEP shows promising potentials in the development of next-generation nanomedicines and vaccines with higher safety and efficacy.


Subject(s)
Neoplasms , Polyethylene Glycols , Humans , Polyethylene Glycols/pharmacokinetics , Liposomes , Neoplasms/drug therapy , Immunotherapy , Vaccination , Ethylenes
18.
Ann Med Surg (Lond) ; 85(12): 6008-6012, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38098566

ABSTRACT

Sarcopenia is a progressive and systemic skeletal muscle disorder associated with aging that usually occurs with age in the elderly. Sarcopenia currently lacks effective pharmacological treatment modalities. Multiple pharmacological intervention modalities are available for osteoporosis, a comprehensive disease characterized by decreased systemic bone mass, degradation of bone microarchitecture, and increased bone fragility. Several recent studies have shown an extremely strong correlation between sarcopenia and osteoporosis, leading to the concept of "osteosarcopenia". Therefore, it is possible to alleviate sarcopenia simultaneously by improving osteoporosis.

19.
JACS Au ; 3(11): 3181-3193, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034980

ABSTRACT

Chemoimmunotherapy can boost strong antitumor immune responses by triggering immunogenic cell death (ICD), which highlights a promising prospect in clinical applications. However, current chemoimmunotherapy shows limited efficacy due to the low delivery efficiency and insufficient immunogenicity of available chemotherapeutic drugs. A supramolecular polymeric nanomedicine (Pt-Tu@NP) is herein reported using cucurbit[7]uril-based host-guest recognition and noncovalent self-assembly. Pt-Tu@NPs have excellent biodistribution and strongly evoke the endoplasmic reticulum stress-mediated ICD of tumor cells, triggering potent antitumor immune responses by promoting dendritic cell (DC) maturation and cytotoxic T cell infiltration. The coordinated butyrate promotes a positive feedback regulation between DCs and CD8+ T cells. Pt-Tu@NPs stimulate immune cold tumors into hot ones, working in synergy with an immune checkpoint blockade to effectively suppress tumor growth and metastasis, which suggests a promising approach for cancer chemoimmunotherapy.

20.
FASEB J ; 37(12): e23281, 2023 12.
Article in English | MEDLINE | ID: mdl-37933920

ABSTRACT

Signaling desensitization is key to limiting signal transduction duration and intensity. Signal transducer and activator of transcription 1 (STAT1) can mediate type II interferon (IFNγ)-induced immune responses, which are enhanced and inhibited by STAT1 phosphorylation and sumoylation, respectively. Here, we identified an N-MYC interacting protein, NMI, which can enhance STAT1 phosphorylation and STAT1-mediated IFNγ immune responses by binding and sequestering the E2 SUMO conjugation enzyme, UBC9, and blocking STAT1 sumoylation. NMI facilitates UBC9 nucleus-to-cytoplasm translocation in response to IFNγ, thereby inhibiting STAT1 sumoylation. STAT1 phosphorylation at Y701 and sumoylation at K703 are mutually exclusive modifications that regulate IFNγ-dependent transcriptional responses. NMI could not alter the phosphorylation level of sumoylation-deficient STAT1 after IFNγ treatment. Thus, IFNγ signaling is modulated by NMI through sequestration of UBC9 in the cytoplasm, leading to inhibition of STAT1 sumoylation. Hence, NMI functions as a switch for STAT1 activation/inactivation cycles by modulating an IFNγ-induced desensitization mechanism.


Subject(s)
Interferon-gamma , Sumoylation , Interferon-gamma/metabolism , Signal Transduction , Phosphorylation , STAT1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...